
A Comparative Study of Two-Way and Multi-Way Equi-Join Algorithms in
Hadoop MapReduce for Big Data Analytics

Ms. Nisha Jain1 and Dr. Preeti Tiwari2

 1 Assistant Professor, S.S. Jain Subodh P.G. Mahila Mahavidyalaya, Jaipur, Rajasthan
2Associate Professor, International School of Informatics & Management, Jaipur, Rajasthan

Abstract: The rapid growth of big data has necessitated the development of efficient algorithms for processing

large-scale datasets. Hadoop MapReduce, a widely used framework for distributed data processing, provides a

robust environment for performing complex data operations like joins. This paper presents a comparative study of

Two-way and Multi-way equi-join algorithms in Hadoop MapReduce, focusing on their performance in the context

of big data analytics. Two-way equi-joins, which involve joining two datasets based on a common key, are the most

common join operations in distributed systems. Multi-way joins, on the other hand, extend this concept by

involving multiple datasets, resulting in more complex operations and increased computational overhead. The study

evaluates these algorithms based on various performance metrics such as number of jobs, pre-processing, cost-

effectiveness, execution time, strength and weakness when applied to large datasets. The results highlight the trade-

offs between Two-way and Multi-way joins, providing insights into the optimization strategies for each type of

operation in a MapReduce environment. By considering factors like number of joins, pre-processing, and cost-

effectiveness, this research aims to guide practitioners in selecting the appropriate join algorithm for big data

processing in Hadoop environments.

Keywords: Hadoop MapReduce, Big Data Analytics, Two-Way Equi-Join, Multi-Way Equi-Join, Join Algorithms

1. Introduction

The efficient processing and analysis of vast datasets are crucial for businesses, researchers, and organizations in the

era of big data. Distributed computing frameworks like Hadoop MapReduce (Palla, K et al., 2009). have emerged as

powerful tools for handling large-scale data processing tasks, especially when dealing with complex operations like

joins. Two-way and Multi-way equi-joins (Chandar, J. et al.,2010). are common techniques for merging datasets based

on shared attributes, enabling users to extract valuable insights from disparate data sources. As the volume and

complexity of big data continue to expand, understanding the performance characteristics of these join algorithms

has become increasingly important.

Hadoop (Pal, S. et al.,2016), an open-source distributed computing platform, is a cornerstone of big data storage and

processing. Its core is the Hadoop Distributed File System (HDFS) and MapReduce (Veiga, J. et al., 2016), a

programming model that processes data in parallel. Tools like Hive have been developed to simplify interaction

with Hadoop, offering a SQL-like interface that abstracts the complexities of writing low-level MapReduce code. In

relational data processing, joins, particularly Two-way and Multi-way equi-joins, are essential for combining data

from multiple tables based on common attributes. This study aims to compare the performance of Two-way and

Multi-way equi-join algorithms within Hadoop MapReduce environments, focusing on key factors such as number

of jobs, pre-processing, cost-effectiveness, execution time, strength and weakness under various conditions. By

understanding the strengths and limitations of these join algorithms, users can make informed decisions on the best

strategies for their specific use cases, ensuring more efficient data processing and enhancing the performance of

Hadoop-based big data systems.

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 59

2. Map Reduce Framework

The MapReduce programming model, the backbone of Hadoop frameworks, is a powerful tool for processing large

datasets in parallel across a cluster of machines. It efficiently handles critical operations like joining data from

multiple sources, which are typically represented as tables. The MapReduce Join algorithm splits the task into two

main phases: map and reduce (Fig1).

Fig 1: Diagram of Map-Reduce Framework (Al-Badarneh et al., 2022)

In the Map phase, input table data is distributed among mappers, processing portions of the data. For a join, related

records from both datasets are sent to the same mapper. Mappers perform initial filtering or transformation to

identify the relevant join key and prepare data for the subsequent reduction phase. This phase is highly parallel, as

multiple mappers can process data simultaneously on different nodes of the cluster. In the Reduce phase, the reducer

gathers and processes all related data for a particular join key, performing the actual join operation. The result is a

merged dataset combining information from multiple sources based on the join condition (Blanas, S. et al., 2010).

3. Map Reduce Join Algorithms

MapReduce, a big data management system, does not natively support direct join algorithms (Pigul, A. et al., 2012).,

so it uses Two-way and Multi-way join algorithms to improve query execution and reduce I/O costs. These

algorithms combine data from multiple tables based on specified conditions. Common techniques for MapReduce

Join include replicated join, partitioned join, and sort-merge join (Shaikh, A. et al.,2012).

3.1 Two-Way Equi Join Algorithms for Map-Reduce

Two-way Equi Join is a crucial operation in relational databases and data processing frameworks that merges two

datasets based on a common attribute or key, resulting in a new dataset with matching rows from both tables. When

two datasets join in the following equation:

 X(A,B) Y(B,C)…………….(1) , X and Y are two datasets (tables).

Two-way join algorithms, such as Map Side Join, Broadcast Join, Map–Merge Join, Repartition Join, and Bloom

Filter Join, are optimized for query optimization (Lee, K et al., 2012).

Input

Map

Map

Map

Shuffle Reduce

Result

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 60

3.1.1 Standard Two-Way Equi Join Algorithms

Standard MapReduce's join algorithms are classified into map-side and reduce-side joins, which are performed in

the map phase or reduce phase. Map-side joins generate the join result in the map phase, while reduce-side joins

send a large number of intermediate records and generate the join result in the reduce phase.

Table 1: Standard Two-Way Equi Join Algorithms: Map-Side Join Vs. Reduce-Side Join (Lee, T. et al., 2014)
MapReduce’s Map-Side Join Algorithm MapReduce's Reduce-Side Join Algorithm

 Performs join operation in map phase, avoiding reduce
phase.

 Efficient for smaller datasets, broadcasted to all mappers.
 Reduces execution time and network traffic.
 Involves one MapReduce job, with smaller dataset

broadcasted and join performed locally on larger dataset.

 Combines large datasets based on a common key.
 Operates in three phases: Map, Shuffle and Sort, Reduce.
 Map phase: Datasets processed independently by mappers.
 Shuffle and Sort phase: Redistributes data to group by

key.
 Reduce phase: Reducers apply join logic to merge records

by key.
 Essential for managing large/skewed datasets, efficient

distribution, and complex joins.

Steps in the Map-Side Join
 Input: Dataset R (Large dataset), Dataset S (Small

dataset) and Join Key: A common key (e.g., User_ID)
present in both datasets

 Load the Smaller Dataset (Dataset S) into Memory:
Distributed Cache is used to load the smaller dataset into
memory, enabling quick access without expensive disk
reads for each cluster node.

 Mapper Function: processes Dataset R by extracting the
join key and comparing it to Dataset S, joining the results
and emitting a key-value pair.

 Emission of the join results, which are the key and the
combined record from both datasets. This eliminates the
need for further shuffling or reducing.

 No Reduce Phase, as the join operation is completed
during the map phase, eliminating the need for additional
sorting, shuffling, or reducing.

 Final output, consists of the key-value pairs emitted by the
mapper, representing the join result.

 Steps in the Reduce-Side Join
 Prepare input data, which includes two or more datasets

(e.g., Dataset R and Dataset S).
 Map Phase, involves a join operation between two or more

datasets, each with a common join key like User_ID. The
key is the join key, and the value is a tagged record
identifying the dataset.

 Shuffle and Sort Phase, which automatically performs the
shuffle and sort operation. This ensures that matching
records from both datasets are brought together and
processed by the same reducer.

 Reduce Phase, the reducer processing key-value pairs
from both datasets, iterating through values and joining
matching records, even if no match is found in Dataset S.

 Output of the reduce phase, consists of the joined records,
stored as key-value pairs, where the key is the join key
and the value is the merged data from both datasets, ready
for further processing or storage.

Advantages and Limitations
 Fast, efficient algorithm avoiding data shuffle between

mappers and reducers.
 Saves network and disk I/O.
 Effective for small, memory-fitting datasets.
 Best suited for equi-joins, joining based on equality of

keys.
 Limitations: memory constraints, not suitable for large

datasets.

Advantages and Limitations
 Flexible and scalable for joins in MapReduce.
 Suitable for large datasets that cannot fit into memory.
 No need for pre-sorting datasets.
 Limitations: High shuffle and sort overhead.

Techniques of Map-Side Join Algorithms

 Map-Side Merge Join Algorithm

 Map-Side Partition Join Algorithm

 Broadcast Join Algorithm

 Fragment Replicated Join Algorithm

 Reverse Map Join Algorithm

Techniques of Reduce-Side Join Algorithms

 Repartition Join Algorithm

 Improved Reparation Join Algorithm

 Hybrid Hadoop Join Algorithm

I. Techniques of Map-Side Join Algorithms: The Map-Side Merge Join algorithm (Lee, T. et al., 2014) is an

efficient technique used in MapReduce frameworks to join large, sorted datasets during the map phase. It

eliminates the need for a reduce phase, reducing data shuffling and network overhead. The algorithm performs the

join by merging pre-sorted

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 61

data streams based on the join key, making it fast and resource-efficient. However, its limitation lies in the

requirement that both datasets must be pre-sorted by the join key, which can add overhead if not done beforehand,

and may not scale well for very large datasets. It is best suited for smaller, pre-sorted datasets. The Map-Side

Partition Merge Join algorithm (Al-Badarneh et al., 2022) is similar but optimized for partitioned datasets. When both

datasets are partitioned by the join key, map tasks can process them concurrently, reducing network traffic.

However, it requires that both datasets be partitioned in the same way, which can lead to imbalanced workloads or

difficulties in partitioning the data. This method is more efficient than the Map-Side Merge Join when partitioning

is feasible. The Broadcast Join algorithm (Shanoda, M et al., 2014) is used when one dataset is small enough to fit into

memory. It broadcasts the smaller dataset to all nodes in the cluster, minimizing the need for a reduce phase and

reducing network overhead. While this method avoids sorting and shuffling, it is limited by the memory capacity of

each node, and large datasets may cause memory overflow issues. The Fragment Replicate Join algorithm (Shaikh,

A. et al.,2012). is similar to the Broadcast Join but replicates the smaller dataset across all mapper nodes, where each

node processes it alongside the larger dataset. It reduces network overhead and simplifies processing but faces

issues with high memory usage and storage requirements. The Reverse Map Join (Al-Badarneh et al., 2022)is

effective when one dataset is much smaller than the other, as it broadcasts the smaller dataset to all mappers, similar

to the Broadcast Join. This reduces the need for data shuffling and sorting. However, it is also limited by memory

capacity and can lead to high memory usage in mappers.

Table 2: Process-Steps of different techniques of Map-Side Join Algorithms
Map-Side Merge
Join Algorithm

Map-Side Partition
Merge Join algorithm

Broadcast Join
Algorithm

Fragment
Replicate Join
Algorithm

Reverse Map Join
Algorithm

Sort Input Datasets:
Both datasets are pre-
sorted by the join key
(before or during the
map phase).

Map Phase: Mappers
process datasets,
emitting key-value
pairs with the join key
and corresponding
records. Data is
emitted in sorted order.

Merge Phase in Map:
Mappers merge the
sorted datasets in
parallel based on the
join key, emitting
combined records for
matching keys.

 No Shuffle Phase: No
shuffle phase is
required since data is
already sorted, and
merging
happens within the
map phase.

Output Phase:
Mappers directly emit
the final joined records
as output.

Partition Datasets: Both
datasets are partitioned
into smaller chunks
based on the join key,
typically using a hash
partitioning strategy.

 Map Phase: Each
mapper processes a
specific partition from
both datasets, emitting
key-value pairs (join key,
corresponding records)
for each dataset.

Merge Phase in Map:
The mapper merges the
two partitions, matching
records based on the join
key and emitting
combined results when
keys match.

 No Shuffle Phase: As
data is already
partitioned, no shuffle
phase is required, and the
merging occurs directly
within the map phase.

Output Phase: The final
joined results are emitted
by the mapper for each
partition.

Identify Smaller
Dataset: Identify the
smaller dataset that
can be broadcasted to
all worker nodes.

Broadcast Smaller
Dataset: The smaller
dataset is sent to all
nodes in the cluster.

Map Phase: Each
node has the smaller
dataset and performs
the join with its
portion of the larger
dataset.

 Join Operation: On
each node, the join is
performed locally
between the
broadcasted smaller
dataset and the local
partition of the larger
dataset.

 Output Phase: The
joined results are
returned from the
nodes.

Fragment the
Larger Dataset:
The larger dataset is
divided into smaller
fragments.

Replicate
Fragments: Each
fragment of the
larger dataset is
replicated and
distributed to all
worker nodes.

Map Phase: Each
node has access to
all fragments of the
larger dataset and
the smaller dataset.

Join Operation:
Each node performs
a local join between
its fragment of the
larger dataset and
the smaller dataset.

Output Phase: The
final joined results
are emitted from
each node.

Identify Larger
Dataset: The larger
dataset is processed
first.

Map Phase: The
larger dataset is
emitted in key-value
pairs, with the key
being the join key.

Broadcast Smaller
Dataset: The smaller
dataset is broadcasted
to all mappers.

Join in Map Phase:
Each mapper uses the
broadcasted smaller
dataset and performs
the join locally with
the larger dataset
partition it processes.

Output Phase: The
final joined records
are emitted by each
mapper.

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 62

II. Techniques of Reduce-Side Join Algorithms: The Repartition Join (Sun, X. et al., 2014) is a crucial technique

in MapReduce that optimizes the performance of join operations between two datasets that may not be partitioned

similarly. It addresses the issue of increased latency and resource consumption by partitioning both datasets based

on the join keys, ensuring all records with the same key are sent to the same node during the shuffle phase. Once

the data is correctly aligned, the actual join operation is performed on the nodes, enabling efficient parallel

processing. However, traditional Repartition Join can still encounter performance bottlenecks, especially with

large datasets or skewed data distributions. To address these limitations, the Improved Repartition Join algorithm

(Barhoush, M. et al., 2019) was introduced. This enhanced method employs several strategies to optimize both the

shuffle and join phases, including handling skewed data distributions, incorporating adaptive partitioning

strategies, and leveraging a broadcast join approach in cases where one dataset is substantially smaller than the

other. The Hybrid Hadoop Join is a data processing technique that combines map-side and reduce-side joins in

Hadoop MapReduce. It initially uses a map-side join method, loading a smaller dataset into memory as a hash

table for fast in-memory lookups. When datasets grow too large, it transitions to a reduce-side join, partitioning

data based on join keys and shuffling it to reducers. This hybrid (Mohamed, M. et al., 2018) approach maximizes

efficiency and minimizes data movement, striking a balance between speed and resource utilization. Unlike

traditional repartition algorithms, the hybrid approach uses intelligent sampling and optimized partitioning

strategies to reduce data volume.

Table 3: Process-Steps of different techniques of Reduce-Side Join Algorithms

Repartition Join Improved Repartition Join Hybrid Hadoop Join

Map Phase:
Input Processing: Each mapper
processes records from datasets A and
B. Emit Key-Value Pairs: For dataset
A, emit (join_key, record_A). For
dataset B, emit (join_key, record_B).

Shuffle and Sort Phase:
 Shuffle: Group key-value pairs by the
join key. All records with the same
key are sent to the same reducer. Sort:
Sort records within each partition by
the join key to ensure that all records
with the same key are grouped
together.

Reduce Phase:
 Process Key-Value Pairs: The reducer
receives all records associated with
the same join key. Join Operation: For
each key, perform the join (e.g.,
nested loop join) on records from
dataset A and dataset B.

Emit Joined Result:
 Output the joined records as
(join_key, joined_record).

Pre-Processing:
Data Partitioning: Use a custom partitioner
to ensure records with the same join key
from datasets A and B are sent to the same
reducer

Map Phase:
Input Processing: Process records from
datasets A and B.
Emit Key-Value Pairs: Emit (join_key,
record_A) for A and (join_key, record_B)
for B.

Shuffle and Sort Phase:
Shuffle: Group data by the join key based
on the custom partitioning.
Sort: Sort records within each partition by
the join key.

Reduce Phase:
Process Key-Value Pairs: The reducer
processes records with the same join key
from A and B.
Join Operation: Perform the join on the
records (e.g., nested loop join).

Emit Joined Result: Output the result as
(join_key, joined_record).

Pre-processing Data:
Data Splitting: Divide data into smaller
chunks for parallel processing.
Partitioning Data: Partition data by join
key to group related data from both
tables.

Map-Side Join (if applicable):
Load the smaller dataset into memory if
it fits.
Map function processes each record and
finds matching keys in the smaller
dataset.

Shuffling and Sorting:
Hadoop shuffles data to ensure records
with the same key go to the same
reducer.
Data is sorted by keys.

Reduce-Side Join:
If datasets are too large for memory, the
join is performed in the reduce phase on
matching keys.

Output:
The final joined results are written to the
output (e.g., HDFS).

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 63

3.1.2 Filter-Based Two-Way Equi Join Algorithms

Filter-based Equi-Joins in MapReduce (Lee, T. et al., 2014) are a significant improvement in processing large datasets.

They address the inefficiencies of traditional equi-joins by minimizing data processing during the join operation. The

approach operates in two phases: the map phase and the reduce phase. In the map phase, each mapper processes its

input data, applying a filtering criterion to eliminate irrelevant records. Only records likely to match during the join

are retained and sent to reducers. The remaining records are shuffled and distributed to the appropriate reducers based

on the join key. In the reduce phase, reducers receive only the relevant data subsets, making the actual equi-join faster

and easier. Filter-based equi-joins offer scalability as datasets grow in size, reducing the amount of data needed for

shuffled and processed. They also enhance resource utilization, allowing better management of memory and

processing power within the Hadoop ecosystem.

Techniques of Filter-Based Two-Way Join Algorithms

The Semi Join Algorithm (Mohamed, M. et al., 2018) is a distributed system operation that filters rows from one

dataset (R) based on the presence of matching keys in another dataset (S). This technique reduces data transfer in

distributed environments by only returning rows with a corresponding key in S. The semi-join process involves two

steps: the mapper phase, which processes the dataset (S) and emits keys, and the reducer phase, which combines all

keys from S and prepares a compact structure for broadcasting. The final step is to emit all unique keys of S. The Pre-

Semi Join Algorithm (Barhoush, M. et al., 2019) addresses the limitations of the semi-join algorithm by introducing a

preprocessing step to reduce data size and ensure efficient filtering. The Bloom Join algorithm (Al Badarneh et al.,

2022) uses Bloom filters to optimize join operations in MapReduce, creating a probabilistic data structure to check if

an element is a member of a set.

Table 4: Process-Steps of different techniques of Filter-based Two-way Join Algorithms

Semi Join Algorithm Pre-Semi Join Algorithm Bloom Join Algorithm

Mapper Phase: The mapper processes
dataset S. Emits the keys from S to be
used for filtering dataset R.

Shuffling Phase: The keys emitted by
the mappers from S are shuffled and
grouped together, ensuring all relevant
keys are sent to the same reducer.

Reducer Phase: The reducer receives
all the keys from S and prepares a
compact structure. The reducer then
broadcasts this compact structure to the
mappers.

Final Filtering: The mappers filter
dataset R, keeping only those rows that
have a matching key in S.

Initial Filtering (Pre-Join Phase):
Dataset S is processed to extract only
the keys needed for the join. R is then
filtered based on the extracted keys
from S.

Mapper Phase: The filtered dataset R
(after applying the pre-semi join filter)
is processed by mappers. The mappers
only pass relevant rows of R that match
the keys from S.

Shuffling Phase: The relevant keys
and rows from R are shuffled and
grouped by the join key.

Reducer Phase: The reducer performs
the join operation on the filtered data,
merging the rows from R with
matching rows from S.

Bloom Filter Creation (Mapper Phase): A
Bloom filter is created for the smaller dataset
(S) in the map phase. The Bloom filter stores
the keys of S in a compact and memory-
efficient way.

Filtering Data (Mapper Phase): The larger
dataset (R) is processed by the mappers. For
each record in R, the Bloom filter is used to
test whether a matching key exists in S.

Shuffling Phase: Only records from R that
have a potential match (as indicated by the
Bloom filter) are sent to the reducers,
reducing unnecessary data shuffle.

Reducer Phase: The reducer performs the
actual join operation, matching records from
R with the corresponding keys in S.

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 64

3.2 Multi-Way Equi Join Algorithms for Map-Reduce

Multi-Way Equi-Joins (Afrati, F. et al., 2011) are essential in databases, data warehousing, and large-scale distributed

data processing systems. They are more complex than traditional two-way joins due to the need to manage data

partitioning, shuffling, sorting, and combining across multiple datasets. When join more than two datasets in the

following equations:

 X(A,B) Y(B,C) Z(C,D)…….…(2) X, Y and Z are datasets (tables)

Multi-way join algorithms, Reduce-Side One-Short Join , Reduce and Reduce-Side Cascade Join are optimized for

query optimization. MapReduce is a distributed framework that provides a powerful and scalable method for multi-

way equi-joins. However, designing efficient algorithms for these operations is challenging. Some effective

algorithms include Reduce-Side One-Shot Join and Reduce-Side Cascade Join (Mohamed, M. et al., 2018). These

operations are necessary when joining multiple datasets based on common attributes, like in e-commerce scenarios.

MapReduce's join operation is divided into Map and Reduce phases: Map Phase, where the mapper reads input

data, Shuffle Phase, where records with the same join key are sent to the same reducer, and Reduce Phase, where

the reducer performs the actual join operation

Techniques for Multi-Way Equi Join Algorithms

The Reduce-Side One-Shot Join is a MapReduce algorithm (Barhoush, M. et alt., 2019) that efficiently joins two large

datasets that cannot fit into memory. It is performed in the reduce phase, with the mapper reading both input

datasets and emitting key-value pairs. Hadoop shuffles and sorts these pairs, ensuring all records with the same join

key are grouped together and sent to the same reducer. The reducer phase processes the grouped records, performs

the actual join operation on matching keys, and outputs the result. This one-shot method minimizes data transfer by

allowing the join to be done in a single step at the reducer. The Reduce-Side Cascade Join algorithm is an advanced

MapReduce technique used to join multiple datasets efficiently, especially when the datasets are large and cannot be

handled entirely in memory (kumar Sahu et al).

 Table 5: Process-Steps of different techniques of Multi -way Join Algorithms

Reduce-Side One-Shot Join Algorithm Reduce-Side Cascade Join Algorithm

Map Phase: Each dataset emits key-value pairs: (key,
"Dataset: record"). Example: (key, "A: record from A"), (key,
"B: record from B"), (key, "C: record from C").

Shuffle Phase: Records with the same key are grouped
together. Ensures that all records with the same join key go to
the same reducer.

Reduce Phase: Reducer receives a list of values for each key
(e.g., customer_id). Performs the join operation based on the
join condition. Outputs the joined records.

First Map Phase: Each dataset emits key-value pairs, using
only the first dataset's join key for partitioning.

First Shuffle and Sort Phase: Data is shuffled by the join key,
sending intermediate results of the first dataset to the reducer.

First Reduce Phase: Joins the first and second datasets,
emitting intermediate results with a new join key.

Second Map and Reduce Phases: Intermediate results are
passed to subsequent stages, joining with additional datasets one
at a time.

Final Output: After all datasets are joined, the final result is
output by the last reducer.

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 65

4. A Comparative Analysis of Join Algorithm in MapReduce

In this section, we analyze the characteristics of Two-way Equi join algorithms and Multi-way Equi join algorithms

(Fig: 2) in MapReduce based on several key parameters that influence overall performance. The comparison is

made between the two-way map-side join algorithm and the two-way reduce-side join algorithm (Blanas, S. et al.,

2010). in terms of efficiency, number of jobs, pre-processing requirements, cost-effectiveness, execution time,

strengths, and weaknesses. This analysis will help readers choose the most suitable join algorithm for their specific

applications. The findings are summarized in the following table.

Fig 2: Two-way Equi join algorithms and Multi-way Equi join algorithms in MapReduce

 (Mohamed, M. et al., 2018)

The map-side join is more efficient for smaller datasets, while the reduce-side join algorithm (Pigul, A. et al., 2012).,

is better suited for handling large datasets. The map-side join is more efficient when one dataset is small enough to

fit into memory, as it eliminates the need for the reduce phase, resulting in fewer jobs, reduced data transfer, and

faster execution times. However, its performance decreases when both datasets are large, as the smaller dataset may

not always fit into memory.

Table 6: Comparison of various Two-Way Equi Map-Side Join Algorithms
Join
Algorithm

Number of
Jobs

Pre-
processing

Cost
Effectiveness

Execution
Time

Strengths Weaknesses

Map-Side
Merge Join

1 job (if
data is
sorted)

Data must be
pre-sorted by
join key

Efficient when
datasets are sorted;
minimal cost

Very fast if
data is
sorted

Efficient for
sorted data, no
need for reduce
phase

Requires pre-sorted
data; inefficient for
unsorted or large
datasets

 Map-Side
Partition
Merge Join

1 job Data is
partitioned
based on the
join key

Cost-effective for
partitioned data

Faster than
reduce-side
join

Good for
partitioned
datasets, reduces
shuffle overhead

Requires data
partitioning; less
effective for
unsorted data

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 66

Broadcast
Join

1 job Broadcast
smaller dataset
to all mappers

High cost for large
datasets
(broadcasting
overhead)

Fast for
small
datasets

Ideal for small
datasets, reduces
need for
shuffling

Inefficient for large
datasets due to high
network overhead

 Fragment
Replicate
Join

1 job
(typically)

Replicate
smaller dataset
to each mapper

Cost-effective for
small replicable
datasets

Fast for
small
datasets

Effective for
small replicated
datasets

Replication
overhead for large
datasets; memory
intensive

Reverse Map
Join

2 jobs
(mapper +
reducer)

Requires
reverse
mapping or
inverting keys

Cost-effective for
certain join types

Slower than
map-side
join

Efficient for
certain reversed
key join
conditions

More complex,
requires additional
mapping steps

As per Table 6, the Map-Side Merge Join is effective when pre-sorted datasets are present, but struggles with

unsorted data. It can handle partitioned data, improving performance when partitioning is feasible. Broadcast Join and

Fragment Replicate Join reduce network overhead by broadcasting smaller datasets, but face memory limitations.

Reverse Map Join efficiently handles smaller datasets but has high memory usage for larger ones. Each algorithm

overcomes specific limitations by leveraging strategies like partitioning or broadcasting. Broadcast Join is the best

choice for smaller datasets in distributed environments due to its speed, simplicity, and efficiency. However, the

choice of join algorithm should be based on the dataset's characteristics, such as size, partitioning, and memory

capacity (Veiga, J et al., 2016).

On the other hand, the reduce-side join is more scalable for large datasets, handling the join in the reduce phase.

Although it requires more jobs and higher execution time due to data transfer overhead, it can handle larger datasets

that cannot be loaded into memory. Pre-processing is necessary to align join keys for the reduce phase. While slower,

it is more adaptable to large datasets but less efficient for small datasets.

Table 7: Comparison of various Two-Way Equi Reduce-Side Join Algorithms

Criteria Repartition Join Improved Repartition Join Hybrid Hadoop Join

Number of Jobs
2 MapReduce Jobs
(for Repartition &
Joining)

2 MapReduce Jobs
(optimized for Skewed data)

3 MapReduce Jobs
(for Repartition, Joining & Final
Output)

Pre-processing
Requires partitioning of
datasets

Minimal pre-processing
(dynamic partitioning and
redistribution of skewed data)

Extensive pre-processing
 (need partitioned or indexed)

Cost
Effectiveness

Cost-effective for
balanced datasets

More Cost-effective for skewed
datasets

More cost-effective: one dataset is
small, due to hybrid techniques (e.g.,
broadcast join)

Execution Time
High latency, slow
execution with skewed
datasets.

Faster execution with dynamic
partitioning, balancing

Fast for small datasets, slow for large

 Strengths
Simple, works well for
balanced data, reduces
network overhead.

Efficient with skewed data,
dynamic partitioning.

Combines join techniques (e.g.,
Broadcast Join and Repartition Join),
optimal for diverse dataset

Weakness
Inefficient with skewed
data

Complex, requires tuning,
inefficient for large datasets

Complex, computationally expensive
for large datasets

As per Table7, Repartition Join (Lee, T. et al., 2014) is a simple and efficient method for balanced datasets, but

struggles with skewed data. Improved Repartition Join handles skewed data and dynamic partitioning, making it

effective for uneven distributions but more complex. Hybrid Hadoop Join, combining Broadcast and Repartition

Join, is more flexible but computationally expensive and complex. The best algorithm depends on the dataset's size,

distribution, and available processing resources. The filter-based two-way equi-join algorithm (Mohamed, M. et al.,

2018) in MapReduce overcomes the limitations of the reduce-based two-way equi-join by efficiently reducing the

amount of data shuffled across the network. In a reduce-based approach, all the matching keys need to be sent to the

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 67

same reducer, resulting in significant data transfer overhead, especially when the datasets are large. In contrast, the

filter-based algorithm pre-filters the data using a smaller, representative subset (or filter) of the join key, which

reduces the dataset size before the join operation. This minimizes the amount of data sent to the reducers, thereby

improving the overall efficiency of the join process, reducing network congestion, and lowering the execution time.

Table 8 : Comparison of various Filter-based Two-Way Equi Join Algorithms

Join Algorithms Semi-Join Algorithm Pre-Semi Join Algorithm Bloom Join Algorithm

Number of Jobs 2 jobs 1 job (or 2 jobs in some cases) 2 jobs

Pre-processing Requires the smaller
dataset to be filtered and
sent to the larger dataset

Pre-filters the smaller dataset
before transmission

Requires building a Bloom filter on
the smaller dataset

Cost Effectiveness Cost-effective when one
dataset is much smaller
than the other

More cost-effective than semi-
join when the smaller dataset is
heavily filtered

Cost-effective for large datasets with
probabilistic filtering

Execution Time Faster than full join, but
requires 2 jobs

Faster than semi-join in some
cases due to reduced data
transmission

Execution time can be faster due to
reduced data size in the second job

Strengths Reduces the amount of
data transferred by only
sending necessary rows

Reduces data transmission by
pre-filtering before join

Efficient for large datasets, reduces
false positives through filtering

Weaknesses Requires two jobs; still
involves significant data
transfer overhead

Requires an additional pre-
processing step, may not be as
efficient for all scenarios

Bloom filter introduces a chance of
false positives, may require tuning

As per Table 8, semi-join algorithm is ideal for small datasets where it can efficiently transfer relevant data to

another, reducing network traffic and execution time. It is cost-effective for skewed datasets. The pre-semi-join

algorithm requires additional preprocessing to extract relevant keys and filter out unnecessary data, reducing the

dataset size before the join. It is more complex and has a higher memory footprint. The Bloom Join algorithm

(Barhoush, M. et al., 2019) uses a Bloom filter to probabilistically filter out irrelevant data, reducing network traffic and

memory usage. It is ideal for large datasets where reducing data transfer costs is crucial. Each algorithm is suited for

different use cases, depending on dataset size, filtering efficiency, and the need for preprocessing or memory

constraints. Semi-join is more efficient for smaller datasets, Pre-Semi-Join for preprocessing-reducing data transfer,

and Bloom Join for large-scale datasets, provided false positives are managed appropriately.

Multi-way equi-join algorithms (Barhoush, M. et al., 2019) in MapReduce reveals a range of techniques designed to

efficiently perform joins across multiple datasets in a distributed setting. Traditional pairwise equi-join methods,

including both reduce-based and filter-based approaches, are extended to handle multi-way joins by leveraging

MapReduce's parallel processing capabilities. One common approach is to use a "broadcasting" technique, where

smaller datasets are broadcasted to all mappers, allowing them to filter and reduce the data before applying the join.

Another strategy involves the use of partitioning schemes, where data is divided into partitions based on join keys,

ensuring that related records from different datasets are grouped together during the shuffle phase. Some algorithms

focus on optimizing the shuffle and sort phases to handle large-scale data more efficiently by minimizing data

transfer and balancing workload across nodes. Recent advancements also explore hybrid models that combine the

strengths of both filter-based and reduce-based techniques, applying local filtering before the final join operation to

reduce the data size. The key challenges addressed in these algorithms include handling skewed data distributions,

optimizing data locality, and improving fault tolerance in large-scale distributed environments.

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 68

Table 9: Comparison of Reduce-Side One-Shot Join and Reduce-Side Cascade Join

Factor Reduce-Side One-Shot Join Reduce-Side Cascade Join

Number of Phases 1 (Single map and reduce phase) Multiple phases (multiple map and reduce jobs)

Memory Usage
High memory usage per reducer (may
cause bottlenecks)

Reduced memory load by joining in stages

Shuffling Overhead High shuffling cost for large datasets Reduced shuffling cost (intermediate results)

Scalability
Scalable for a small number of datasets
but can struggle with many datasets

More scalable for large multi-way joins with
many datasets

Complexity Simpler to implement More complex due to multiple stages

Execution Time
Faster for simple joins, may be slower for
large multi-way joins

Potentially slower due to multiple phases but
more efficient for large datasets

Ideal Use Case
Best for smaller datasets or fewer join
keys

Better for large datasets with many joins,
especially when memory is a concern

As per Table 9, Both Reduce-Side One-Shot Join and Reduce-Side Cascade Join are effective algorithms for multi-

way equi-joins in MapReduce. Reduce-Side One-Shot Join is simpler and suitable for smaller datasets, but may not

scale efficiently for large multi-way joins due to high memory usage and shuffle overhead. Reduce-Side Cascade Join

breaks the problem into multiple stages, improving memory efficiency and reducing shuffle overhead, but introducing

more complexity and requiring multiple MapReduce jobs (Al-Badarneh et al., 2022). The choice between these

algorithms depends on dataset size, number of joins, and available system resources.

5. Conclusion

 Two-way equi-join and multi-way equi-join algorithms are essential in distributed data processing, with broad

applications in big data analytics, data warehousing, and more. While two-way joins, involving only two datasets,

are simple, efficient, and work well for smaller datasets, multi-way joins, which handle three or more datasets, are

more complex due to the increased memory requirements, shuffle phase overhead, and the challenge of integrating

multiple datasets. The shuffle phase overhead for multi-way joins is significantly higher, as it involves more data

exchanges between nodes, leading to increased memory usage compared to the moderate requirements of two-way

joins. Performance tends to be faster for two-way joins on smaller datasets, but it becomes slower for multi-way

joins, particularly as the number of datasets increases. Two-way joins scale well for small to medium-sized datasets,

whereas multi-way joins require optimizations to handle larger datasets efficiently. Common use cases for two-way

joins are simple joins between two datasets, while multi-way joins are more suited for complex data integration

across multiple sources. Addressing data skew in multi-way joins is critical, with techniques like skew-insensitive

joins, salting, and data partitioning helping to mitigate this issue. Advanced techniques such as bloom filters reduce

data transfer during the shuffle phase, improving performance for large-scale joins. Hybrid joins, combining map-

side and reduce-side processing, help balance load, and distributed query engines like Apache Hive and Apache

Spark have optimized methods for handling multi-way equi-joins, abstracting complexity while applying advanced

optimizations. As datasets grow, memory-efficient approaches like streaming or chunked processing are likely to

become more widespread. Future developments in these algorithms are expected to focus on enhancing

optimization techniques, reducing memory skew, and improving query engines to enable efficient multi-way joins

across vast datasets.

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 69

6. References

1. Palla, K. (2009). A comparative analysis of join algorithms using the hadoop map/reduce framework. Master of science

thesis. School of informatics, University of Edinburgh.

2. Afrati, F. N., & Ullman, J. D. (2011). Optimizing multiway joins in a map-reduce environment. IEEE Transactions on

Knowledge and Data Engineering, 23(9), 1282-1298.

3. Chandar, J. (2010). Join algorithms using map/reduce. Magisterarb. University of Edinburgh.

4. Leu, J.S., Yee, Y.S. and Chen, W.L. (2010) ‘Comparison of map-reduce and SQL on large-scale data processing’,

International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp.244–248.

5. Blanas, S., Patel, J. M., Ercegovac, V., Rao, J., Shekita, E. J., & Tian, Y. (2010, June). A comparison of join algorithms for

log processing in mapreduce. In Proceedings of the 2010 ACM SIGMOD International Conference on Management of

data (pp. 975-986).

6. Pigul, A. (2012). Comparative Study parallel join algorithms for MapReduce environment. Труды Института

системного программирования РАН, 23, 285-306.

7. Shaikh, A., & Jindal, R. (2012). Join query processing in mapreduce environment. In Advances in Communication,

Network, and Computing: Third International Conference, CNC 2012, Chennai, India, February 24-25, 2012, Revised

Selected Papers 3 (pp. 275-281). Springer Berlin Heidelberg.

8. Lee, K. H., Lee, Y. J., Choi, H., Chung, Y. D., & Moon, B. (2012). Parallel data processing with MapReduce: a

survey. AcM sIGMoD record, 40(4), 11-20.

9. Lee, T., Im, D. H., Kim, H., & Kim, H. J. (2014). Application of filters to multiway joins in MapReduce. Mathematical

Problems in Engineering, 2014(1), 249418.

10. Shanoda, M. S., Senbel, S. A., & Khafagy, M. H. (2014, December). Jomr: Multi-join optimizer technique to enhance map-

reduce job. In 2014 9th International Conference on Informatics and Systems (pp. PDC-80). IEEE.

11. Sun, X. H., Qu, W., Stojmenovic, I., Zhou, W., Li, Z., Guo, H., ... & Liu, L. (Eds.). (2014, August). Algorithms and

Architectures for Parallel Processing: 14th International Conference, ICA3PP 2014, Dalian, China, August 24-27, 2014.

Proceedings, Part II. In International Conference on Algorithms and Architectures for Parallel Processing 14. Cham:

Springer International Publishing.

12. Veiga, J., Expósito, R. R., Pardo, X. C., Taboada, G. L., & Tourifio, J. (2016, December). Performance evaluation of big

data frameworks for large-scale data analytics. In 2016 IEEE International Conference on Big Data (Big Data) (pp. 424-

431). IEEE

13. Pal, S. (2016). SQL on Big Data: Technology, Architecture, and Innovation. Apress.

14. Mohamed, M. H., Khafagy, M. H., & Ibrahim, M. H. (2018). From Two-Way to Multi-Way: A Comparative Study for

Map-Reduce Join Algorithms. WSEAS Transactions on Communications, 17, 129-141.

15. Barhoush, M. M., AlSobeh, A. M., & Al Rawashdeh, A. (2019, April). A survey on parallel join algorithms using

MapReduce on Hadoop. In 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information

Technology (JEEIT) (pp. 381-388). IEEE.

16. kumar Sahu, S., Chhualsingh, S., & Dora, S. G. Multi-Way Join using Map Reduce for Big Data Applications.

17. Pang, Z.,Wu, S., Huang, H., Hong, Z., & Xie, Y. (2021). AQUA+: Query Optimization for Hybrid Database-MapReduce

System. Knowledge and Information Systems, 63(4), 905-938.

18. Al-Badarneh, A. F., & Rababa, S. A. (2022). An analysis of two-way equi-join algorithms under MapReduce. Journal of

King Saud University-Computer and Information Sciences, 34(4), 1074-1085.

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 70

