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Abstract: The rapid growth of big data has necessitated the development of efficient algorithms for processing 

large-scale datasets. Hadoop MapReduce, a widely used framework for distributed data processing, provides a 

robust environment for performing complex data operations like joins. This paper presents a comparative study of 

Two-way and Multi-way equi-join algorithms in Hadoop MapReduce, focusing on their performance in the context 

of big data analytics. Two-way equi-joins, which involve joining two datasets based on a common key, are the most 

common join operations in distributed systems. Multi-way joins, on the other hand, extend this concept by 

involving multiple datasets, resulting in more complex operations and increased computational overhead. The study 

evaluates these algorithms based on various performance metrics such as number of jobs, pre-processing, cost-

effectiveness, execution time, strength and weakness when applied to large datasets. The results highlight the trade-

offs between Two-way and Multi-way joins, providing insights into the optimization strategies for each type of 

operation in a MapReduce environment. By considering factors like number of joins, pre-processing, and cost-

effectiveness, this research aims to guide practitioners in selecting the appropriate join algorithm for big data 

processing in Hadoop environments. 
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1. Introduction 

 
The efficient processing and analysis of vast datasets are crucial for businesses, researchers, and organizations in the 

era of big data. Distributed computing frameworks like Hadoop MapReduce (Palla, K et al., 2009). have emerged as 

powerful tools for handling large-scale data processing tasks, especially when dealing with complex operations like 

joins. Two-way and Multi-way equi-joins (Chandar, J. et al.,2010). are common techniques for merging datasets based 

on shared attributes, enabling users to extract valuable insights from disparate data sources. As the volume and 

complexity of big data continue to expand, understanding the performance characteristics of these join algorithms 

has become increasingly important. 

Hadoop (Pal, S. et al.,2016), an open-source distributed computing platform, is a cornerstone of big data storage and 

processing. Its core is the Hadoop Distributed File System (HDFS) and MapReduce (Veiga, J. et al., 2016), a 

programming model that processes data in parallel. Tools like Hive have been developed to simplify interaction 

with Hadoop, offering a SQL-like interface that abstracts the complexities of writing low-level MapReduce code. In 

relational data processing, joins, particularly Two-way and Multi-way equi-joins, are essential for combining data 

from multiple tables based on common attributes. This study aims to compare the performance of Two-way and 

Multi-way equi-join algorithms within Hadoop MapReduce environments, focusing on key factors such as number 

of jobs, pre-processing, cost-effectiveness, execution time, strength and weakness under various conditions. By 

understanding the strengths and limitations of these join algorithms, users can make informed decisions on the best 

strategies for their specific use cases, ensuring more efficient data processing and enhancing the performance of 

Hadoop-based big data systems. 
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2. Map Reduce Framework  
 

The MapReduce programming model, the backbone of Hadoop frameworks, is a powerful tool for processing large 

datasets in parallel across a cluster of machines. It efficiently handles critical operations like joining data from 

multiple sources, which are typically represented as tables. The MapReduce Join algorithm splits the task into two 

main phases: map and reduce (Fig1). 

 

 

 

 

 

 

 

 

 

 

Fig 1: Diagram of Map-Reduce Framework (Al-Badarneh et al., 2022) 

 

In the Map phase, input table data is distributed among mappers, processing portions of the data. For a join, related 

records from both datasets are sent to the same mapper. Mappers perform initial filtering or transformation to 

identify the relevant join key and prepare data for the subsequent reduction phase. This phase is highly parallel, as 

multiple mappers can process data simultaneously on different nodes of the cluster. In the Reduce phase, the reducer 

gathers and processes all related data for a particular join key, performing the actual join operation. The result is a 

merged dataset combining information from multiple sources based on the join condition (Blanas, S. et al., 2010). 

 
3. Map Reduce Join Algorithms 

 
MapReduce, a big data management system, does not natively support direct join algorithms (Pigul, A. et al., 2012)., 

so it uses Two-way and Multi-way join algorithms to improve query execution and reduce I/O costs. These 

algorithms combine data from multiple tables based on specified conditions. Common techniques for MapReduce 

Join include replicated join, partitioned join, and sort-merge join (Shaikh, A. et al.,2012). 

 

3.1 Two-Way Equi Join Algorithms for Map-Reduce 

Two-way Equi Join is a crucial operation in relational databases and data processing frameworks that merges two 

datasets based on a common attribute or key, resulting in a new dataset with matching rows from both tables. When 

two datasets join in the following equation: 

                

 X(A,B ) Y(B,C)…………….(1) , X and Y are two datasets (tables).  

  

Two-way join algorithms, such as Map Side Join, Broadcast Join, Map–Merge Join, Repartition Join, and Bloom 

Filter Join, are optimized for query optimization (Lee, K et al., 2012). 
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3.1.1 Standard Two-Way Equi Join Algorithms  

Standard MapReduce's join algorithms are classified into map-side and reduce-side joins, which are performed in 

the map phase or reduce phase. Map-side joins generate the join result in the map phase, while reduce-side joins 

send a large number of intermediate records and generate the join result in the reduce phase. 

 
Table 1:   Standard Two-Way Equi Join Algorithms: Map-Side Join Vs. Reduce-Side Join (Lee, T. et al., 2014) 
MapReduce’s Map-Side Join Algorithm MapReduce's Reduce-Side Join Algorithm 

 

 Performs join operation in map phase, avoiding reduce 
phase. 

 Efficient for smaller datasets, broadcasted to all mappers. 
 Reduces execution time and network traffic. 
 Involves one MapReduce job, with smaller dataset 

broadcasted and join performed locally on larger dataset. 

 Combines large datasets based on a common key. 
 Operates in three phases: Map, Shuffle and Sort, Reduce.  
 Map phase: Datasets processed independently by mappers.  
 Shuffle and Sort phase: Redistributes data to group by 

key.  
 Reduce phase: Reducers apply join logic to merge records 

by key. 
 Essential for managing large/skewed datasets, efficient 

distribution, and complex joins. 

Steps in the Map-Side Join  
 Input:  Dataset R (Large dataset), Dataset S (Small 

dataset) and Join Key: A common key (e.g.,  User_ID) 
present in both datasets 

 Load the Smaller Dataset (Dataset S) into Memory: 
Distributed Cache is used to load the smaller dataset into 
memory, enabling quick access without expensive disk 
reads for each cluster node. 

 Mapper Function: processes Dataset R by extracting the 
join key and comparing it to Dataset S, joining the results 
and emitting a key-value pair. 

 Emission of the join results, which are the key and the 
combined record from both datasets. This eliminates the 
need for further shuffling or reducing.  

 No Reduce Phase, as the join operation is completed 
during the map phase, eliminating the need for additional 
sorting, shuffling, or reducing.  

 Final output, consists of the key-value pairs emitted by the 
mapper, representing the join result. 

  Steps in the Reduce-Side Join 
 Prepare input data, which includes two or more datasets 

(e.g., Dataset R and Dataset S).  
 Map Phase, involves a join operation between two or more 

datasets, each with a common join key like User_ID. The 
key is the join key, and the value is a tagged record 
identifying the dataset. 

  Shuffle and Sort Phase, which automatically performs the 
shuffle and sort operation. This ensures that matching 
records from both datasets are brought together and 
processed by the same reducer. 

  Reduce Phase, the reducer processing key-value pairs 
from both datasets, iterating through values and joining 
matching records, even if no match is found in Dataset S. 

 Output of the reduce phase, consists of the joined records, 
stored as key-value pairs, where the key is the join key 
and the value is the merged data from both datasets, ready 
for further processing or storage. 

Advantages and Limitations  
 Fast, efficient algorithm avoiding data shuffle between 

mappers and reducers. 
 Saves network and disk I/O. 
 Effective for small, memory-fitting datasets. 
 Best suited for equi-joins, joining based on equality of 

keys. 
 Limitations: memory constraints, not suitable for large 

datasets. 

Advantages and Limitations 
 Flexible and scalable for joins in MapReduce. 
  Suitable for large datasets that cannot fit into memory. 
 No need for pre-sorting datasets. 
 Limitations:   High shuffle and sort overhead. 
 

Techniques of Map-Side Join Algorithms 

 Map-Side Merge Join Algorithm 

 Map-Side Partition Join Algorithm 

 Broadcast Join Algorithm 

 Fragment Replicated Join Algorithm 

 Reverse Map Join Algorithm 

Techniques of Reduce-Side Join Algorithms 

 Repartition Join Algorithm 

 Improved Reparation Join Algorithm 

 Hybrid Hadoop Join Algorithm 

 

 

I. Techniques of Map-Side Join Algorithms:  The Map-Side Merge Join algorithm (Lee, T. et al., 2014) is an 

efficient technique used in MapReduce frameworks to join large, sorted datasets during the map phase. It 

eliminates the need for a reduce phase, reducing data shuffling and network overhead. The algorithm performs the 

join by merging pre-sorted 
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data streams based on the join key, making it fast and resource-efficient. However, its limitation lies in the 

requirement that both datasets must be pre-sorted by the join key, which can add overhead if not done beforehand, 

and may not scale well for very large datasets. It is best suited for smaller, pre-sorted datasets. The Map-Side 

Partition Merge Join algorithm (Al-Badarneh et al., 2022) is similar but optimized for partitioned datasets. When both 

datasets are partitioned by the join key, map tasks can process them concurrently, reducing network traffic. 

However, it requires that both datasets be partitioned in the same way, which can lead to imbalanced workloads or 

difficulties in partitioning the data. This method is more efficient than the Map-Side Merge Join when partitioning 

is feasible. The Broadcast Join algorithm (Shanoda, M et al., 2014) is used when one dataset is small enough to fit into 

memory. It broadcasts the smaller dataset to all nodes in the cluster, minimizing the need for a reduce phase and 

reducing network overhead. While this method avoids sorting and shuffling, it is limited by the memory capacity of 

each node, and large datasets may cause memory overflow issues. The Fragment Replicate Join algorithm (Shaikh, 

A. et al.,2012).  is similar to the Broadcast Join but replicates the smaller dataset across all mapper nodes, where each 

node processes it alongside the larger dataset. It reduces network overhead and simplifies processing but faces 

issues with high memory usage and storage requirements.   The Reverse Map Join (Al-Badarneh et al., 2022)is 

effective when one dataset is much smaller than the other, as it broadcasts the smaller dataset to all mappers, similar 

to the Broadcast Join. This reduces the need for data shuffling and sorting. However, it is also limited by memory 

capacity and can lead to high memory usage in mappers. 

 
Table 2:   Process-Steps of different techniques of Map-Side Join Algorithms 
Map-Side Merge  
Join Algorithm 

Map-Side Partition 
Merge Join algorithm 

Broadcast Join 
Algorithm 

Fragment 
Replicate Join 
Algorithm 

Reverse Map Join 
Algorithm 
 

Sort Input Datasets: 
Both datasets are pre-
sorted by the join key 
(before or during the 
map phase). 
 
Map Phase: Mappers 
process datasets, 
emitting key-value 
pairs with the join key 
and corresponding 
records. Data is 
emitted in sorted order. 
 
Merge Phase in Map: 
Mappers merge the 
sorted datasets in 
parallel based on the 
join key, emitting 
combined records for 
matching keys. 
 
 No Shuffle Phase: No 
shuffle phase is 
required since data is 
already sorted, and 
merging  
happens within the 
map phase. 
 
Output Phase: 
Mappers directly emit 
the final joined records 
as output. 

Partition Datasets: Both 
datasets are partitioned 
into smaller chunks 
based on the join key, 
typically using a hash 
partitioning strategy. 
 
 Map Phase: Each 
mapper processes a 
specific partition from 
both datasets, emitting 
key-value pairs (join key, 
corresponding records) 
for each dataset. 
 
Merge Phase in Map: 
The mapper merges the 
two partitions, matching 
records based on the join 
key and emitting 
combined results when 
keys match. 
 
 No Shuffle Phase: As 
data is already 
partitioned, no shuffle  
phase is required, and the 
merging occurs directly 
within the map phase. 
 
Output Phase: The final 
joined results are emitted 
by the mapper for each 
partition. 

Identify Smaller 
Dataset: Identify the 
smaller dataset that 
can be broadcasted to 
all worker nodes. 
 
Broadcast Smaller 
Dataset: The smaller 
dataset is sent to all 
nodes in the cluster. 
 
Map Phase: Each 
node has the smaller 
dataset and performs 
the join with its 
portion of the larger 
dataset. 
 
 Join Operation: On 
each node, the join is 
performed locally 
between the 
broadcasted smaller 
dataset and the local 
partition of the larger 
dataset. 
 
 Output Phase: The  
joined results are 
returned from the 
nodes. 
 
 

Fragment the 
Larger Dataset: 
The larger dataset is 
divided into smaller 
fragments. 
 
Replicate 
Fragments: Each 
fragment of the 
larger dataset is 
replicated and 
distributed to all 
worker nodes. 
 
Map Phase: Each 
node has access to 
all fragments of the 
larger dataset and 
the smaller dataset. 
 
Join Operation: 
Each node performs 
a local join between 
its fragment of the 
larger dataset and 
the smaller dataset. 
 
Output Phase: The 
final joined results 
are emitted from 
each node. 
 
 

Identify Larger 
Dataset: The larger 
dataset is processed 
first. 
 
Map Phase: The 
larger dataset is 
emitted in key-value 
pairs, with the key 
being the join key. 
 
Broadcast Smaller 
Dataset: The smaller 
dataset is broadcasted 
to all mappers. 
 
Join in Map Phase: 
Each mapper uses the 
broadcasted smaller 
dataset and performs 
the join locally with 
the larger dataset 
partition it processes. 
 
Output Phase: The 
final joined records 
are emitted by each 
mapper. 
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II. Techniques of Reduce-Side Join Algorithms:   The Repartition Join (Sun, X. et al., 2014) is a crucial technique 

in MapReduce that optimizes the performance of join operations between two datasets that may not be partitioned 

similarly. It addresses the issue of increased latency and resource consumption by partitioning both datasets based 

on the join keys, ensuring all records with the same key are sent to the same node during the shuffle phase. Once 

the data is correctly aligned, the actual join operation is performed on the nodes, enabling efficient parallel 

processing. However, traditional Repartition Join can still encounter performance bottlenecks, especially with 

large datasets or skewed data distributions. To address these limitations, the Improved Repartition Join algorithm 

(Barhoush, M. et al., 2019) was introduced. This enhanced method employs several strategies to optimize both the 

shuffle and join phases, including handling skewed data distributions, incorporating adaptive partitioning 

strategies, and leveraging a broadcast join approach in cases where one dataset is substantially smaller than the 

other. The Hybrid Hadoop Join is a data processing technique that combines map-side and reduce-side joins in 

Hadoop MapReduce. It initially uses a map-side join method, loading a smaller dataset into memory as a hash 

table for fast in-memory lookups. When datasets grow too large, it transitions to a reduce-side join, partitioning 

data based on join keys and shuffling it to reducers. This hybrid (Mohamed, M. et al., 2018) approach maximizes 

efficiency and minimizes data movement, striking a balance between speed and resource utilization. Unlike 

traditional repartition algorithms, the hybrid approach uses intelligent sampling and optimized partitioning 

strategies to reduce data volume. 

 
Table 3:   Process-Steps of different techniques of Reduce-Side Join Algorithms 

Repartition Join Improved Repartition Join Hybrid Hadoop Join 

Map Phase:  
Input Processing: Each mapper 
processes records from datasets A and 
B. Emit Key-Value Pairs: For dataset 
A, emit (join_key, record_A). For 
dataset B, emit (join_key, record_B). 
 
Shuffle and Sort Phase: 
 Shuffle: Group key-value pairs by the 
join key. All records with the same 
key are sent to the same reducer. Sort: 
Sort records within each partition by 
the join key to ensure that all records 
with the same key are grouped 
together. 
 
Reduce Phase: 
 Process Key-Value Pairs: The reducer 
receives all records associated with 
the same join key. Join Operation: For 
each key, perform the join (e.g., 
nested loop join) on records from 
dataset A and dataset B. 
 
Emit Joined Result: 
 Output the joined records as 
(join_key, joined_record). 

Pre-Processing: 
Data Partitioning: Use a custom partitioner 
to ensure records with the same join key 
from datasets A and B are sent to the same 
reducer 
 
Map Phase: 
Input Processing: Process records from 
datasets A and B. 
Emit Key-Value Pairs: Emit (join_key, 
record_A) for A and (join_key, record_B) 
for B. 
 
Shuffle and Sort Phase: 
Shuffle: Group data by the join key based 
on the custom partitioning. 
Sort: Sort records within each partition by 
the join key. 

 
Reduce Phase: 
Process Key-Value Pairs: The reducer 
processes records with the same join key 
from A and B. 
Join Operation: Perform the join on the 
records (e.g., nested loop join). 
 
Emit Joined Result: Output the result as 
(join_key, joined_record). 

Pre-processing Data: 
Data Splitting: Divide data into smaller 
chunks for parallel processing. 
Partitioning Data: Partition data by join 
key to group related data from both 
tables. 
 
Map-Side Join (if applicable): 
Load the smaller dataset into memory if 
it fits. 
Map function processes each record and 
finds matching keys in the smaller 
dataset. 
 
Shuffling and Sorting: 
Hadoop shuffles data to ensure records 
with the same key go to the same 
reducer. 
Data is sorted by keys. 
 
Reduce-Side Join: 
If datasets are too large for memory, the 
join is performed in the reduce phase on 
matching keys. 
 
Output: 
The final joined results are written to the 
output (e.g., HDFS). 
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3.1.2 Filter-Based Two-Way Equi Join Algorithms  
 
Filter-based Equi-Joins in MapReduce (Lee, T. et al., 2014) are a significant improvement in processing large datasets. 

They address the inefficiencies of traditional equi-joins by minimizing data processing during the join operation. The 

approach operates in two phases: the map phase and the reduce phase. In the map phase, each mapper processes its 

input data, applying a filtering criterion to eliminate irrelevant records. Only records likely to match during the join 

are retained and sent to reducers. The remaining records are shuffled and distributed to the appropriate reducers based 

on the join key. In the reduce phase, reducers receive only the relevant data subsets, making the actual equi-join faster 

and easier. Filter-based equi-joins offer scalability as datasets grow in size, reducing the amount of data needed for 

shuffled and processed. They also enhance resource utilization, allowing better management of memory and 

processing power within the Hadoop ecosystem. 

 
Techniques of Filter-Based Two-Way Join Algorithms 
 
The Semi Join Algorithm (Mohamed, M. et al., 2018) is a distributed system operation that filters rows from one 

dataset (R) based on the presence of matching keys in another dataset (S). This technique reduces data transfer in 

distributed environments by only returning rows with a corresponding key in S. The semi-join process involves two 

steps: the mapper phase, which processes the dataset (S) and emits keys, and the reducer phase, which combines all 

keys from S and prepares a compact structure for broadcasting. The final step is to emit all unique keys of S. The Pre-

Semi Join Algorithm (Barhoush, M. et al., 2019) addresses the limitations of the semi-join algorithm by introducing a 

preprocessing step to reduce data size and ensure efficient filtering. The Bloom Join algorithm (Al Badarneh et al., 

2022) uses Bloom filters to optimize join operations in MapReduce, creating a probabilistic data structure to check if 

an element is a member of a set. 

 
Table 4:   Process-Steps of different techniques of Filter-based Two-way Join Algorithms 

 

Semi Join Algorithm Pre-Semi Join Algorithm Bloom Join Algorithm 

Mapper Phase: The mapper processes 
dataset S. Emits the keys from S to be 
used for filtering dataset R. 
 
Shuffling Phase: The keys emitted by 
the mappers from S are shuffled and 
grouped together, ensuring all relevant 
keys are sent to the same reducer. 
 
Reducer Phase: The reducer receives 
all the keys from S and prepares a 
compact structure. The reducer then 
broadcasts this compact structure to the 
mappers. 
 
Final Filtering: The mappers filter 
dataset R, keeping only those rows that 
have a matching key in S. 
 
  

Initial Filtering (Pre-Join Phase): 
Dataset S is processed to extract only 
the keys needed for the join. R is then 
filtered based on the extracted keys 
from S. 
 
Mapper Phase: The filtered dataset R 
(after applying the pre-semi join filter) 
is processed by mappers. The mappers 
only pass relevant rows of R that match 
the keys from S. 
 
Shuffling Phase: The relevant keys 
and rows from R are shuffled and 
grouped by the join key. 

 
Reducer Phase: The reducer performs 
the join operation on the filtered data, 
merging the rows from R with 
matching rows from S. 

Bloom Filter Creation (Mapper Phase): A 
Bloom filter is created for the smaller dataset 
(S) in the map phase. The Bloom filter stores 
the keys of S in a compact and memory-
efficient way. 
 
Filtering Data (Mapper Phase): The larger 
dataset (R) is processed by the mappers. For 
each record in R, the Bloom filter is used to 
test whether a matching key exists in S. 
 
Shuffling Phase: Only records from R that 
have a potential match (as indicated by the 
Bloom filter) are sent to the reducers, 
reducing unnecessary data shuffle. 
 
Reducer Phase: The reducer performs the 
actual join operation, matching records from 
R with the corresponding keys in S. 

MEERAYAN JOURNAL (ISSN NO:2455-6033) VOLUME 25 ISSUE 1 2025

PAGE N0: 64



3.2 Multi-Way Equi Join Algorithms for Map-Reduce 
 

Multi-Way Equi-Joins (Afrati, F. et al., 2011) are essential in databases, data warehousing, and large-scale distributed 

data processing systems. They are more complex than traditional two-way joins due to the need to manage data 

partitioning, shuffling, sorting, and combining across multiple datasets.  When join more than two datasets in the 

following equations: 

   X(A,B) Y(B,C) Z(C,D)…….…(2)     X, Y and Z are datasets (tables)   

 

Multi-way join algorithms, Reduce-Side One-Short Join , Reduce and Reduce-Side Cascade Join are optimized for 

query optimization. MapReduce is a distributed framework that provides a powerful and scalable method for multi-

way equi-joins. However, designing efficient algorithms for these operations is challenging. Some effective 

algorithms include Reduce-Side One-Shot Join and Reduce-Side Cascade Join (Mohamed, M. et al., 2018). These 

operations are necessary when joining multiple datasets based on common attributes, like in e-commerce scenarios. 

MapReduce's join operation is divided into Map and Reduce phases: Map Phase, where the mapper reads input 

data, Shuffle Phase, where records with the same join key are sent to the same reducer, and Reduce Phase, where 

the reducer performs the actual join operation 

 

Techniques for Multi-Way Equi Join Algorithms  

The Reduce-Side One-Shot Join is a MapReduce algorithm (Barhoush, M. et alt., 2019) that efficiently joins two large 

datasets that cannot fit into memory. It is performed in the reduce phase, with the mapper reading both input 

datasets and emitting key-value pairs. Hadoop shuffles and sorts these pairs, ensuring all records with the same join 

key are grouped together and sent to the same reducer. The reducer phase processes the grouped records, performs 

the actual join operation on matching keys, and outputs the result. This one-shot method minimizes data transfer by 

allowing the join to be done in a single step at the reducer. The Reduce-Side Cascade Join algorithm is an advanced 

MapReduce technique used to join multiple datasets efficiently, especially when the datasets are large and cannot be 

handled entirely in memory (kumar Sahu et al). 

 
  Table 5:   Process-Steps of different techniques of Multi -way Join Algorithms 

Reduce-Side One-Shot Join Algorithm Reduce-Side Cascade Join Algorithm 

Map Phase:  Each dataset emits key-value pairs: (key, 
"Dataset: record"). Example: (key, "A: record from A"), (key, 
"B: record from B"), (key, "C: record from C"). 
 
Shuffle Phase: Records with the same key are grouped 
together. Ensures that all records with the same join key go to 
the same reducer. 
 

Reduce Phase: Reducer receives a list of values for each key 
(e.g., customer_id). Performs the join operation based on the 
join condition. Outputs the joined records. 
 

 
 

First Map Phase: Each dataset emits key-value pairs, using 
only the first dataset's join key for partitioning. 
 
First Shuffle and Sort Phase: Data is shuffled by the join key, 
sending intermediate results of the first dataset to the reducer. 
 
First Reduce Phase: Joins the first and second datasets, 
emitting intermediate results with a new join key. 
 
Second Map and Reduce Phases: Intermediate results are 
passed to subsequent stages, joining with additional datasets one 
at a time. 
 
Final Output: After all datasets are joined, the final result is 
output by the last reducer. 
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4. A Comparative Analysis of Join Algorithm in MapReduce   
 

In this section, we analyze the characteristics of Two-way Equi join algorithms and Multi-way Equi join algorithms 

(Fig: 2) in MapReduce based on several key parameters that influence overall performance. The comparison is 

made between the two-way map-side join algorithm and the two-way reduce-side join algorithm (Blanas, S. et al., 

2010). in terms of efficiency, number of jobs, pre-processing requirements, cost-effectiveness, execution time, 

strengths, and weaknesses. This analysis will help readers choose the most suitable join algorithm for their specific 

applications. The findings are summarized in the following table. 

 
Fig 2:  Two-way Equi join algorithms and Multi-way Equi join algorithms in MapReduce 

 (Mohamed, M. et al., 2018) 
 
The map-side join is more efficient for smaller datasets, while the reduce-side join algorithm (Pigul, A. et al., 2012).,  

is better suited for handling large datasets. The map-side join is more efficient when one dataset is small enough to 

fit into memory, as it eliminates the need for the reduce phase, resulting in fewer jobs, reduced data transfer, and 

faster execution times. However, its performance decreases when both datasets are large, as the smaller dataset may 

not always fit into memory. 

 
Table 6:    Comparison of various Two-Way Equi Map-Side Join Algorithms 
Join 
Algorithm 

Number of 
Jobs 

Pre-
processing 

Cost 
Effectiveness 

Execution 
Time 

Strengths Weaknesses 

Map-Side 
Merge Join 

1 job (if 
data is 
sorted) 

Data must be 
pre-sorted by 
join key 

Efficient when 
datasets are sorted; 
minimal cost 

Very fast if 
data is 
sorted 

Efficient for 
sorted data, no 
need for reduce 
phase 

Requires pre-sorted 
data; inefficient for 
unsorted or large 
datasets 

       Map-Side 
Partition 
Merge Join 

1 job Data is 
partitioned 
based on the 
join key 

Cost-effective for 
partitioned data 

Faster than 
reduce-side 
join 

Good for 
partitioned 
datasets, reduces 
shuffle overhead 

Requires data 
partitioning; less 
effective for 
unsorted data 
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Broadcast 
Join 

1 job Broadcast 
smaller dataset 
to all mappers 

High cost for large 
datasets 
(broadcasting 
overhead) 

Fast for 
small 
datasets 

Ideal for small 
datasets, reduces 
need for 
shuffling 

Inefficient for large 
datasets due to high 
network overhead 

       Fragment 
Replicate 
Join 

1 job 
(typically) 

Replicate 
smaller dataset 
to each mapper 

Cost-effective for 
small replicable 
datasets 

Fast for 
small 
datasets 

Effective for 
small replicated 
datasets 

Replication 
overhead for large 
datasets; memory 
intensive 

Reverse Map 
Join 

2 jobs 
(mapper + 
reducer) 

Requires 
reverse 
mapping or 
inverting keys 

Cost-effective for 
certain join types 

Slower than 
map-side 
join 

Efficient for 
certain reversed 
key join 
conditions 

More complex, 
requires additional 
mapping steps 

 
As per Table 6, the Map-Side Merge Join is effective when pre-sorted datasets are present, but struggles with 

unsorted data. It can handle partitioned data, improving performance when partitioning is feasible. Broadcast Join and 

Fragment Replicate Join reduce network overhead by broadcasting smaller datasets, but face memory limitations. 

Reverse Map Join efficiently handles smaller datasets but has high memory usage for larger ones. Each algorithm 

overcomes specific limitations by leveraging strategies like partitioning or broadcasting. Broadcast Join is the best 

choice for smaller datasets in distributed environments due to its speed, simplicity, and efficiency. However, the 

choice of join algorithm should be based on the dataset's characteristics, such as size, partitioning, and memory 

capacity (Veiga, J et al., 2016). 

On the other hand, the reduce-side join is more scalable for large datasets, handling the join in the reduce phase. 

Although it requires more jobs and higher execution time due to data transfer overhead, it can handle larger datasets 

that cannot be loaded into memory. Pre-processing is necessary to align join keys for the reduce phase. While slower, 

it is more adaptable to large datasets but less efficient for small datasets. 

 
Table 7:   Comparison of various Two-Way Equi Reduce-Side Join Algorithms 

Criteria Repartition Join Improved Repartition Join Hybrid Hadoop Join 

Number of Jobs 
2 MapReduce Jobs 
(for Repartition & 
Joining)  

2 MapReduce Jobs  
(optimized for Skewed data) 

3 MapReduce Jobs 
(for Repartition, Joining & Final 
Output) 

Pre-processing 
Requires partitioning of 
datasets 

Minimal pre-processing 
(dynamic partitioning and 
redistribution of skewed data) 

Extensive pre-processing 
 (need partitioned or indexed) 

Cost 
Effectiveness 

Cost-effective for 
balanced datasets 
  

More Cost-effective for skewed 
datasets 

More cost-effective: one dataset is 
small, due to hybrid techniques (e.g., 
broadcast join) 

Execution Time 
High latency, slow 
execution with skewed 
datasets. 

Faster execution with dynamic 
partitioning, balancing 

Fast for small datasets, slow for large 

 Strengths 
Simple, works well for 
balanced data, reduces 
network overhead. 

Efficient with skewed data, 
dynamic partitioning. 

Combines join techniques (e.g., 
Broadcast Join and Repartition Join), 
optimal for diverse dataset 

Weakness 
Inefficient with skewed 
data 

Complex, requires tuning, 
inefficient for large datasets 

Complex, computationally expensive 
for large datasets 

 
As per Table7, Repartition Join (Lee, T. et al., 2014) is a simple and efficient method for balanced datasets, but 

struggles with skewed data. Improved Repartition Join handles skewed data and dynamic partitioning, making it 

effective for uneven distributions but more complex. Hybrid Hadoop Join, combining Broadcast and Repartition 

Join, is more flexible but computationally expensive and complex. The best algorithm depends on the dataset's size, 

distribution, and available processing resources. The filter-based two-way equi-join algorithm (Mohamed, M. et al., 

2018) in MapReduce overcomes the limitations of the reduce-based two-way equi-join by efficiently reducing the 

amount of data shuffled across the network. In a reduce-based approach, all the matching keys need to be sent to the 
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same reducer, resulting in significant data transfer overhead, especially when the datasets are large. In contrast, the 

filter-based algorithm pre-filters the data using a smaller, representative subset (or filter) of the join key, which 

reduces the dataset size before the join operation. This minimizes the amount of data sent to the reducers, thereby 

improving the overall efficiency of the join process, reducing network congestion, and lowering the execution time. 

 
Table 8 :  Comparison of various Filter-based Two-Way Equi  Join Algorithms 

Join Algorithms Semi-Join Algorithm Pre-Semi Join Algorithm Bloom Join Algorithm 

Number of Jobs 2 jobs 1 job (or 2 jobs in some cases) 2 jobs 

Pre-processing Requires the smaller 
dataset to be filtered and 
sent to the larger dataset 

Pre-filters the smaller dataset 
before transmission 

Requires building a Bloom filter on 
the smaller dataset 

Cost Effectiveness Cost-effective when one 
dataset is much smaller 
than the other 

More cost-effective than semi-
join when the smaller dataset is 
heavily filtered 

Cost-effective for large datasets with 
probabilistic filtering 

Execution Time Faster than full join, but 
requires 2 jobs 

Faster than semi-join in some 
cases due to reduced data 
transmission 

Execution time can be faster due to 
reduced data size in the second job 

Strengths Reduces the amount of 
data transferred by only 
sending necessary rows 

Reduces data transmission by 
pre-filtering before join 

Efficient for large datasets, reduces 
false positives through filtering 

Weaknesses Requires two jobs; still 
involves significant data 
transfer overhead 

Requires an additional pre-
processing step, may not be as 
efficient for all scenarios 

Bloom filter introduces a chance of 
false positives, may require tuning 

 
As per Table 8, semi-join algorithm is ideal for small datasets where it can efficiently transfer relevant data to 

another, reducing network traffic and execution time. It is cost-effective for skewed datasets. The pre-semi-join 

algorithm requires additional preprocessing to extract relevant keys and filter out unnecessary data, reducing the 

dataset size before the join. It is more complex and has a higher memory footprint. The Bloom Join algorithm 

(Barhoush, M. et al., 2019) uses a Bloom filter to probabilistically filter out irrelevant data, reducing network traffic and 

memory usage. It is ideal for large datasets where reducing data transfer costs is crucial. Each algorithm is suited for 

different use cases, depending on dataset size, filtering efficiency, and the need for preprocessing or memory 

constraints. Semi-join is more efficient for smaller datasets, Pre-Semi-Join for preprocessing-reducing data transfer, 

and Bloom Join for large-scale datasets, provided false positives are managed appropriately. 

Multi-way equi-join algorithms (Barhoush, M. et al., 2019)  in MapReduce reveals a range of techniques designed to 

efficiently perform joins across multiple datasets in a distributed setting. Traditional pairwise equi-join methods, 

including both reduce-based and filter-based approaches, are extended to handle multi-way joins by leveraging 

MapReduce's parallel processing capabilities. One common approach is to use a "broadcasting" technique, where 

smaller datasets are broadcasted to all mappers, allowing them to filter and reduce the data before applying the join. 

Another strategy involves the use of partitioning schemes, where data is divided into partitions based on join keys, 

ensuring that related records from different datasets are grouped together during the shuffle phase. Some algorithms 

focus on optimizing the shuffle and sort phases to handle large-scale data more efficiently by minimizing data 

transfer and balancing workload across nodes. Recent advancements also explore hybrid models that combine the 

strengths of both filter-based and reduce-based techniques, applying local filtering before the final join operation to 

reduce the data size. The key challenges addressed in these algorithms include handling skewed data distributions, 

optimizing data locality, and improving fault tolerance in large-scale distributed environments. 
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Table 9:   Comparison of Reduce-Side One-Shot Join and Reduce-Side Cascade Join 

Factor Reduce-Side One-Shot Join Reduce-Side Cascade Join 

Number of Phases 1 (Single map and reduce phase) Multiple phases (multiple map and reduce jobs) 

Memory Usage 
High memory usage per reducer (may 
cause bottlenecks) 

Reduced memory load by joining in stages 

Shuffling Overhead High shuffling cost for large datasets Reduced shuffling cost (intermediate results) 

Scalability 
Scalable for a small number of datasets 
but can struggle with many datasets 

More scalable for large multi-way joins with 
many datasets 

Complexity Simpler to implement More complex due to multiple stages 

Execution Time 
Faster for simple joins, may be slower for 
large multi-way joins 

Potentially slower due to multiple phases but 
more efficient for large datasets 

Ideal Use Case 
Best for smaller datasets or fewer join 
keys 

Better for large datasets with many joins, 
especially when memory is a concern 

 
As per Table 9, Both Reduce-Side One-Shot Join and Reduce-Side Cascade Join are effective algorithms for multi-

way equi-joins in MapReduce. Reduce-Side One-Shot Join is simpler and suitable for smaller datasets, but may not 

scale efficiently for large multi-way joins due to high memory usage and shuffle overhead. Reduce-Side Cascade Join 

breaks the problem into multiple stages, improving memory efficiency and reducing shuffle overhead, but introducing 

more complexity and requiring multiple MapReduce jobs (Al-Badarneh et al., 2022). The choice between these 

algorithms depends on dataset size, number of joins, and available system resources. 

 
5. Conclusion  

 
 Two-way equi-join and multi-way equi-join algorithms are essential in distributed data processing, with broad 

applications in big data analytics, data warehousing, and more. While two-way joins, involving only two datasets, 

are simple, efficient, and work well for smaller datasets, multi-way joins, which handle three or more datasets, are 

more complex due to the increased memory requirements, shuffle phase overhead, and the challenge of integrating 

multiple datasets. The shuffle phase overhead for multi-way joins is significantly higher, as it involves more data 

exchanges between nodes, leading to increased memory usage compared to the moderate requirements of two-way 

joins. Performance tends to be faster for two-way joins on smaller datasets, but it becomes slower for multi-way 

joins, particularly as the number of datasets increases. Two-way joins scale well for small to medium-sized datasets, 

whereas multi-way joins require optimizations to handle larger datasets efficiently. Common use cases for two-way 

joins are simple joins between two datasets, while multi-way joins are more suited for complex data integration 

across multiple sources. Addressing data skew in multi-way joins is critical, with techniques like skew-insensitive 

joins, salting, and data partitioning helping to mitigate this issue. Advanced techniques such as bloom filters reduce 

data transfer during the shuffle phase, improving performance for large-scale joins. Hybrid joins, combining map-

side and reduce-side processing, help balance load, and distributed query engines like Apache Hive and Apache 

Spark have optimized methods for handling multi-way equi-joins, abstracting complexity while applying advanced 

optimizations. As datasets grow, memory-efficient approaches like streaming or chunked processing are likely to 

become more widespread. Future developments in these algorithms are expected to focus on enhancing 

optimization techniques, reducing memory skew, and improving query engines to enable efficient multi-way joins 

across vast datasets. 
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