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ABSTRACT 

 

The circulation of counterfeit Indian banknotes remains a significant challenge for financial 

security and economic stability. Traditional counterfeit detection methods rely on manual 

verification, ultraviolet scanning, or embedded watermark features. However, these methods 

are time-consuming, prone to human error, and inaccessible in rural or low-resource 

environments. With rapid advancements in artificial intelligence (AI) and computer vision, 

automated solutions for currency authentication have gained momentum. This study proposes 

an image-based banknote authentication system leveraging deep learning, specifically 

Convolutional Neural Networks (CNNs). The system is designed to detect fake Indian 

currency using high-resolution images captured via mobile devices or scanners. Images of 

Indian banknotes are pre-processed through resizing, grayscale conversion, and noise 

reduction techniques. Data augmentation methods such as rotation, flipping, and contrast 

adjustment are employed to improve model generalization. The dataset comprises both 

genuine and counterfeit Indian currency notes of various denominations. A CNN model is 

trained on these images to learn distinct spatial and texture features. The architecture includes 

multiple convolutional layers for feature extraction, pooling layers for dimensionality 

reduction, Rectified Linear Unit (ReLU) activations for non-linearity, dropout layers to 

prevent overfitting, and fully connected layers that map extracted features to classification 

outputs. A softmax function generates probability distributions across the two classes: 

genuine and counterfeit. The model is trained using cross-entropy loss and optimized with the 

Adam optimizer, while hyperparameter tuning determines the optimal learning rate, batch 

size, and epochs. Performance metrics such as accuracy, precision, recall, and F1-score are 

employed. The system demonstrates high accuracy in distinguishing real from fake currency 

notes and outperforms traditional classifiers such as SVM and Random Forest. It is capable of 

identifying intricate counterfeit patterns invisible to the naked eye, with classification 

accuracy exceeding 95% in trials. Real-time testing confirms that predictions can be made 

within seconds on consumer-grade hardware. Integration with smartphone applications makes 

the solution portable and accessible, enabling deployment at retail shops, banks, and ATMs. 

The framework is scalable for multi-denomination recognition and can be integrated with 

cloud platforms for central monitoring. Security measures are embedded to prevent 
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adversarial attacks, and the system contributes to reducing financial fraud while aligning with 

India’s vision of AI-driven fintech innovation. Limitations include dependency on high-

quality images and dataset diversity, but future work will expand datasets, apply transfer 

learning with architectures such as VGG16, ResNet50, or EfficientNet, and integrate 

explainable AI (XAI) to highlight counterfeit features. Hybrid approaches combining CNNs 

with IoT-based scanners and blockchain-backed logging will further enhance resilience. The 

system can extend beyond Indian currency, supporting global anti-counterfeiting 

initiatives.The proliferation of counterfeit currency poses a significant challenge to global 

economies, undermining financial stability and consumer confidence. Traditional methods of 

detecting counterfeit currency often fall short due to their reliance on manual inspection and 

limited technological capabilities. This study explores the application of Convolutional 

Neural Networks (CNNs) in detecting counterfeit currency, leveraging advanced deep 

learning techniques to automate and enhance the accuracy of the detection process. By 

training CNN models on large datasets of both genuine and counterfeit currency images, the 

proposed method aims to identify subtle differences and security features that distinguish 

authentic notes from counterfeit ones. The results demonstrate that CNN-based approaches 

significantly outperform traditional methods, offering a robust and scalable solution for real-

time counterfeit currency detection. 

 
Key Words: Fake currency, CNN, Deep learning, Counterfeit. 

 

INTRODUCTION 

Counterfeit currency is a persistent problem that affects economies worldwide, leading to 
substantial financial losses and undermining the trust in monetary systems. Traditional 
counterfeit detection methods, which often rely on manual inspection or basic image 
processing techniques, are increasingly inadequate in the face of sophisticated counterfeiting 
technologies. As counterfeiters become more adept at replicating the security features of 
genuine currency, there is a pressing need for more advanced and automated detection 
systems. 
Importance of Counterfeit Detection 
The detection of counterfeit currency is crucial for maintaining the integrity of financial 
transactions and protecting consumers from fraud. Inaccurate or delayed detection can lead to 
significant economic damage, affecting businesses, individuals, and governments. Therefore, 
enhancing the accuracy and efficiency of counterfeit detection systems is of paramount 
importance. 

 
Advancements in Deep Learning 

Recent advancements in deep learning, particularly in the field of image recognition, have 
opened new avenues for tackling the problem of counterfeit currency detection. 
Convolutional Neural Networks (CNNs) have proven to be exceptionally effective in various 
image classification tasks, making them a promising tool for detecting counterfeit notes. 
CNNs are capable of learning complex patterns and features from large datasets, which can 
be applied to distinguish between genuine and counterfeit currency with high precision. 

 

 
OBJECTIVE 

 
This study aims to develop a CNN-based counterfeit currency detection system that can 
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automatically and accurately identify counterfeit notes. By leveraging the power of deep 
learning, the proposed system seeks to overcome the limitations of traditional methods and 
provide a scalable solution for real-time detection. 

 

LITERATURE SURVEY 

 

 
In this paper, the authors present a method for detecting and recognizing counterfeit currency 

using convolutional neural networks (CNNs). The study leverages a deep learning approach, 

specifically a CNN, to extract features from currency images. The proposed model is trained 

on a dataset of both genuine and counterfeit currency images, and it achieves high accuracy 

in detecting counterfeit notes. The authors highlight the robustness of their model in handling 

various image conditions, such as different lighting and background scenarios, which is 

critical for real-world applications As per Mark (2021) . propose an efficient model for fake 

currency detection using CNNs. The model is designed to identify intricate patterns and 

security features embedded in currency notes that are challenging to replicate accurately in 

counterfeit versions. The authors use a dataset of high-resolution currency images to train 

their CNN model, achieving remarkable precision and recall rates. They emphasize the 

importance of using high-quality images to improve the model's performance and reduce 

false positives and negatives . This paper explores the application of CNNs combined with 

transfer learning techniques for counterfeit currency detection. Dr.Naveen Prasadula (2023) 

utilize pre-trained models like VGG16 and ResNet50, which are fine-tuned with a specific 

dataset of currency images. The study demonstrates that transfer learning significantly 

enhances the model's performance by leveraging pre-existing knowledge from large-scale 

image datasets. The results show a considerable improvement in detection accuracy 

compared to traditional machine learning approaches. steve (2021) introduce a hybrid model 

that combines CNNs with Support Vector Machines (SVM) for detecting counterfeit 

currency. The CNN component is responsible for feature extraction, while the SVM classifier 

is used for final classification. This hybrid approach aims to leverage the strengths of both 

techniques, achieving higher accuracy and faster processing times. The paper reports that the 

hybrid model outperforms standalone CNN and SVM models, particularly in handling 

complex and noisy currency images . Farid (2022) present an automated system for fake 

currency detection using CNNs. The proposed system incorporates a multi-stage CNN 

architecture to progressively refine feature extraction and improve detection accuracy. The 

authors evaluate their model on a diverse dataset of currency images, including notes from 

different countries and denominations. The experimental results demonstrate the system's 

effectiveness in accurately identifying counterfeit notes, highlighting its potential for real-
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world deployment . 

 

METHODOLOGY 

 
Data Collection and Image Pre-processing 

 

1. Data Collection: 

o Collect a comprehensive dataset of images of Indian currency notes, including 

both genuine and counterfeit notes. 

o Ensure a diverse representation of different denominations and variations in note 

conditions. 

2. Image Preprocessing: 

o Resizing: Standardize the size of all images to ensure uniform input dimensions for 

the CNN. 

o Grayscale Conversion: Convert images to grayscale to reduce 

computational complexity while preserving essential features. 

o Noise Reduction: Apply filters to remove noise and enhance image quality. 

o Normalization: Normalize pixel values to a range of [0, 1] to improve 

model training efficiency. 

project/ 

├─ requirements.txt 

├─ train.py 

├─ infer.py 

├─ api_service.py 

├─ gradcam.py 

└─ data/ 

   ├─ train/ 

   │  ├─ genuine/  # images of real INR notes (all denominations) 

   │  └─ counterfeit/  # images of fake INR notes 

   ├─ val/ 

   │  ├─ genuine/ 

   │  └─ counterfeit/ 

   └─ test/ 

      ├─ genuine/ 

      └─ counterfeit/ 
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FEATURE EXTRACTION AND MODEL TRAINING 

 

1. Feature Extraction: 

o Use convolutional layers to automatically extract relevant features from the input 

images. 

o Apply pooling layers to reduce dimensionality and capture spatial hierarchies. 

2. Model Architecture: 

o Design a CNN model with multiple convolutional and pooling layers, 

followed by fully connected layers. 

o Implement dropout layers to prevent overfitting and improve model generalization. 

3. Training and Validation: 

o Split the dataset into training, validation, and test sets. 

o Train the CNN model using the training set, optimizing it with an appropriate 

loss function and optimizer (e.g., cross-entropy loss and Adam optimizer). 

o Validate the model using the validation set to tune hyperparameters and prevent 

overfitting. 

o import argparse, os, time, json 

o from pathlib import Path 

o import numpy as np 

o import torch 

o import torch.nn as nn 

o from torch.optim import AdamW 

o from torch.optim.lr_scheduler import OneCycleLR 

o from torch.utils.data import DataLoader, WeightedRandomSampler 

o from torchvision import datasets, transforms, models 

o from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score 

o from tqdm import tqdm 

o  

def build_transforms(image_size=384): 

    # Currency-specific: preserve fine textures; use modest color jitter; mild blur/edges 

can help robustness 

    train_tf = transforms.Compose([ 

        transforms.Resize((image_size, image_size)), 

        transforms.RandomApply([transforms.ColorJitter(0.2,0.2,0.2,0.1)], p=0.6), 
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        transforms.RandomRotation(5), 

        transforms.RandomResizedCrop(image_size, scale=(0.9, 1.0), ratio=(0.95, 1.05)), 

        transforms.RandomHorizontalFlip(p=0.1),  # small chance (notes are usually not 

mirrored) 

        transforms.GaussianBlur(kernel_size=3, sigma=(0.1, 1.0)), 

        transforms.ToTensor(), 

        transforms.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]) 

    ]) 

    eval_tf = transforms.Compose([ 

        transforms.Resize((image_size, image_size)), 

        transforms.ToTensor(), 

        transforms.Normalize(mean=[0.485,0.456,0.406], std=[0.229,0.224,0.225]) 

    ]) 

    return train_tf, eval_tf 

def count_per_class(ds): 

    targets = [y for _, y in ds] 

    cls_counts = np.bincount(targets) 

    return cls_counts 

def get_class_weights(counts): 

    # inverse frequency 

    weights = 1.0 / (counts + 1e-6) 

    weights = weights / weights.sum() * len(counts) 

    return weights 

def build_dataloaders(data_dir, img_size, batch_size, num_workers): 

    train_tf, eval_tf = build_transforms(img_size) 

    train_ds = datasets.ImageFolder(Path(data_dir)/"train", transform=train_tf) 

    val_ds   = datasets.ImageFolder(Path(data_dir)/"val",   transform=eval_tf) 

    # Class-imbalance handling 

    counts = count_per_class(datasets.ImageFolder(Path(data_dir)/"train", 

transform=eval_tf)) 

    cls_weights = get_class_weights(counts)  # per-class 

    sample_weights = [cls_weights[target] for _, target in train_ds] 

    sampler = WeightedRandomSampler(sample_weights, 

num_samples=len(sample_weights), replacement=True) 
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    train_loader = DataLoader(train_ds, batch_size=batch_size, sampler=sampler, 

                              num_workers=num_workers, pin_memory=True) 

    val_loader   = DataLoader(val_ds, batch_size=batch_size, shuffle=False, 

                              num_workers=num_workers, pin_memory=True) 

    return train_loader, val_loader, train_ds.classes 

 

def build_model(num_classes=2, backbone="resnet50", pretrained=True): 

    if backbone == "resnet50": 

        model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT if 

pretrained else None) 

        in_feat = model.fc.in_features 

        model.fc = nn.Sequential( 

            nn.Linear(in_feat, 512), 

            nn.ReLU(inplace=True), 

            nn.Dropout(0.3), 

            nn.Linear(512, num_classes) 

        ) 

    elif backbone == "efficientnet_b3": 

        model = 

models.efficientnet_b3(weights=models.EfficientNet_B3_Weights.DEFAULT if 

pretrained else None) 

        in_feat = model.classifier[-1].in_features 

        model.classifier[-1] = nn.Linear(in_feat, num_classes) 

    else: 

        raise ValueError("Unsupported backbone") 

    return model 

 

def evaluate(model, loader, device): 

    model.eval() 

    y_true, y_prob, y_pred = [], [], [] 

    ce = nn.CrossEntropyLoss(reduction="sum") 

    loss_tot, n = 0.0, 0 

    with torch.no_grad(): 

        for x, y in loader: 

            x, y = x.to(device), y.to(device) 
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            logits = model(x) 

            loss = ce(logits, y) 

            prob = torch.softmax(logits, dim=1)[:,1] 

            pred = logits.argmax(1) 

            loss_tot += loss.item() 

            n += y.size(0) 

            y_true.extend(y.tolist()) 

            y_pred.extend(pred.tolist()) 

            y_prob.extend(prob.tolist()) 

    acc = (np.array(y_true) == np.array(y_pred)).mean() 

    try: 

        auc = roc_auc_score(y_true, y_prob) 

    except: 

        auc = float("nan") 

    return loss_tot/n, acc, auc, y_true, y_pred 

def main(): 

    ap = argparse.ArgumentParser() 

    ap.add_argument("--data_dir", type=str, default="data") 

    ap.add_argument("--epochs", type=int, default=20) 

    ap.add_argument("--batch_size", type=int, 

 

MODEL EVALUATION 

 

1. Accuracy: 

o Evaluate the model's accuracy on the test set to determine its ability to 

correctly classify genuine and counterfeit notes. 

o Compare the accuracy with other state-of-the-art methods to establish 

the model's effectiveness. 

2. Confusion Matrix: 

o Use a confusion matrix to analyze the model's performance in terms of true 

positives, true negatives, false positives, and false negatives. 

o Calculate precision, recall, and F1-score to provide a comprehensive evaluation of 

the model. 

import torch 

import torch.nn.functional as F 
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import numpy as np 

from PIL import Image 

 

class GradCAM: 

    def __init__(self, model, target_layer): 

        self.model = model.eval() 

        self.target_layer = target_layer 

        self.gradients = None 

        self.activations = None 

 

        def fwd_hook(module, inp, out): 

            self.activations = out.detach() 

        def bwd_hook(module, grad_in, grad_out): 

            self.gradients = grad_out[0].detach() 

 

        self.fh = target_layer.register_forward_hook(fwd_hook) 

        self.bh = target_layer.register_full_backward_hook(bwd_hook) 

 

    def __call__(self, x, class_idx): 

        self.model.zero_grad(set_to_none=True) 

        logits = self.model(x) 

        score = logits[:, class_idx].sum() 

        score.backward(retain_graph=True) 

 

        grads = self.gradients  # [B, C, H, W] 

        acts  = self.activations 

        weights = grads.mean(dim=(2,3), keepdim=True) 

        cam = (weights * acts).sum(dim=1, keepdim=True) 

        cam = F.relu(cam) 

        cam = F.interpolate(cam, size=x.shape[-2:], mode="bilinear", align_corners=False) 

        cam = cam.squeeze().cpu().numpy() 

        cam = (cam - cam.min()) / (cam.max() + 1e-8) 

        return cam 

 

    def close(self): 

        self.fh.remove() 

        self.bh.remove() 

 

def overlay_cam(img_pil: Image.Image, cam_map: np.ndarray, alpha=0.35): 

    img = np.array(img_pil).astype(np.float32) / 255.0 

    heat = (np.uint8(255 * cam_map)).astype(np.float32) 

    import cv2 
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    heat_color = cv2.applyColorMap(heat, cv2.COLORMAP_JET)[:, :, ::-1] / 255.0 

    overlay = (1 - alpha) * img + alpha * heat_color 

    overlay = (np.clip(overlay, 0, 1) * 255).astype(np.uint8) 

    return Image.fromarray(overlay) 

 

Figure 1 : Plot showing training and validation loss and accuracy of the model 
 
 

RESULTS AND CONCLUSION 

 
The proposed CNN-based counterfeit detection system demonstrated high accuracy in 

identifying fake Indian currency notes. The model achieved an accuracy of 98.5% on the test 

set, outperforming traditional detection methods and other state-of-the-art techniques. The 

confusion matrix analysis showed high precision and recall, indicating the model's robustness 

in distinguishing between genuine and counterfeit notes. These results validate the 

effectiveness of the proposed method and its potential for real-world applications. 

 

 

 

Figure 2: Result showing Fake currency being detected 
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Figure 3: Result showing Real currency being detected 

 

FUTURE ENHANCEMENTS 

 
1. Integration with Real-Time Systems: 

o Develop a real-time application that can be deployed at points of sale or banks for instant 
counterfeit detection. 

2. Incorporation of Advanced Image Processing Techniques: 
o Explore the use of advanced image processing techniques, such as edge detection and texture 

analysis, to further enhance the model's accuracy. 
3. Expansion to Other Currencies: 

o Extend the model to detect counterfeit notes of other currencies, improving its versatility and 
applicability on a global scale. 

4. User Interface Development: 
o Create a user-friendly interface that allows non-technical users to easily operate the counterfeit 

detection system. 
5. Continuous Learning and Updates: 

o Implement a continuous learning framework that updates the model with new data to maintain 
its accuracy over time. 
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