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ABSTRACT 
 

 Kandu [8], Agarwal [2], Gupta [7], Chitra [4], Agarwal [1], Gaunt [6], 

Ayant [3] and several other authors have evaluated some finite, infinite and 

double integrals involving the generalized hypergeometric functions. 

 Looking importance and usefulness of integral in various fields, in this 

paper we have establish a new integral involving G-Function of two variables, 

which will be helpful in the study of boundary value problems, expansion 

formula, Fourier series, statistical distribution, probability and integral equation. 
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1. INTRODUCTION: 
 

 The G-function of two variables was defined by Shrivastava and Joshi [10, 

p. 471] in terms of Mellin-Barnes type integrals as follows:  
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x and y are not equal to zero, and an empty product is interpreted as unity pi, qi, ni 

and mj are non negative integers such that pi ≥ ni ≥ 0, qi ≥ 0, qj ≥ mj ≥ 0, (i = 1, 2, 

3; j = 2, 3).  

 The contour L1 is in the -plane and runs from – i∞ to + i∞, with loops, if 

necessary, to ensure that the poles of (dj - ) (j = 1, ..., m2) lie to the right, and 

the poles of (1 – cj + ) (j = 1, ..., n2), (1 – aj+ + ) (j = 1, ..., n1) to the left of 

the contour.  

 The countor L2 is in the -plane and runs from – i∞ to + i∞, with loops, if 

necessary, to ensure that the poles of (fj –) (j = 1, ..., m3) lie to the right, and 

the poles of (1 – ej + ) (j = 1, ..., n3), (1 – aj+  + ) (j = 1, ..., n1) to the left of 

the contour, and the double integral converges if 

  2(n1 + m2 + n2) > (p1 + q1 + p2 + q2) 

  2(n1 + m3 + n3) > (p1 + q1 + p3 + q3) 

and  | arg x | < ½ U, | arg y | < ½ V    

where  U = [n1 + m2 + n2 ½ (p1 + q1 + p2 + q2)]   

  V = [n1 + m3 + n3 ½ (p1 + q1 + p3 + q3)]   

 These assumptions for the G-function of two variables will be adhered to 

throughout this research work.  

 The following formulae are required in the proof: 

 From Sharma [9, p.3-5]: 
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,          (2)  

valid for R() > 0, R(1/2 −  − ) > 0, R( −  −  +  − 1/2) > 0. 

 From Erdelyi [5, p.4, (46)]: 

 The multiplication formula for the Gamma-Function  
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where m is a positive integer. 

 

2. INTEGRAL: 
 

 Following Kandu [8], Agarwal [2], Gupta [7], Chitra [4], Agarwal [1], 

Gaunt [6], Ayant [3] and other authors in this section, we evaluate an integral 

involving G-function of two variables.  
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where m is a positive integer, and 

        
     

 
        

       

  
   

          
         

  
         

       

  
   

       
          

  
        

          

  
   

          
         

  
         

           

  
   

                    
  The result is valid under the following conditions: 

(i)                         (      
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  R( −  −  +  − 1/2) > 0, R( + mdj) > 0, for j = 1, 2, …, m2 

 R( +  − 2m − 2mch − 1/2) < 0, for h = 1, 2, …, n2. 
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  R( −  −  +  − 1/2) > 0, R( + mdj) > 0, for j = 1, 2, …, m2 

 R( +  − 2mch) < 
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 R( +  − 2mch) < 
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Proof of (4):  

  To prove (4), we substitute the contour integral (1) for the G-function of 

two variables in the integrand of (4), change the order of integration (which we 

suppose to be permissible) and evaluate the inner integral with the help of (2). 

  The value of the integral then becomes 
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by virtue of (3). 

  The contour L1 and L2 runs – i∞ to + i∞, so that the poles of         for 

j = 1, 2, …, m2,  (
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  ) for k = 0, 1, 2, …, (m − 1) are to the right, and all the poles 

of           for j = 1, 2, …, n2,  (
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  )  for k = 0, 1, 

2, …, (m − 1) are to the right of L1. 

  Interpreting (5), with the help of (1), we get (4) under the conditions stated 

there in. 

 

3. SPECIAL CASES:  

 

  On specializing the parameters in (5) we get following integral in terms of 

G-function of one variable:  
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where m is a positive integer, and 
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  The result is valid under the following conditions: 

(i)                    (    
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  R( −  −  +  − 1/2) > 0, R( + mbj) > 0, for j = 1, 2, …, p 

 R( +  − 2m − 2mah − 1/2) < 0, for h = 1, 2, …, q. 

(ii)                        (    
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  R( −  −  +  − 1/2) > 0, R( + mbj) > 0, for j = 1, 2, …, p 
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